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Abstract Obesity is an important public health
problem worldwide and is a major risk factor for a
number of chronic diseases such as type II diabetes,
adverse cardiovascular events and metabolic
syndrome-related features. Different treatments have
been applied to tackle body fat accumulation and its
associated clinical manifestations. Often, relevant
weight loss is achieved during the first 6 months
under different dietary treatments. From this point, a
plateau is reached, and a gradual recovery of the lost
weight may occur. Therefore, new research
approaches are being investigated to assure weight
maintenance. Pioneering investigations have reported
that oxygen variations in organic systems may
produce changes in body composition. Possible
applications of intermittent hypoxia to promote health

and in various pathophysiological states have been
reported. The hypoxic stimulus in addition to diet and
exercise can be an interesting approach to lose
weight, by inducing higher basal noradrenalin levels
and other metabolic changes whose mechanisms are
still unclear. Indeed, hypoxic situations increase the
diameter of arterioles, produce peripheral vasodilata-
tion and decrease arterial blood pressure. Further-
more, hypoxic training increases the activity of
glycolytic enzymes, enhancing the number of mito-
chondria and glucose transporter GLUT-4 levels as
well as improving insulin sensitivity. Moreover,
hypoxia increases blood serotonin and decreases
leptin levels while appetite is suppressed. These
observations allow consideration of the hypothesis
that intermittent hypoxia induces fat loss and may
ameliorate cardiovascular health, which might be of
interest for the treatment of obesity. This new strategy
may be useful and practical for clinical applications in
obese patients.
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Obesity: prevalence, causes and complications

Obesity is an important public health problem in most
countries [63], which is characterized by an excess of
body fat, when amounting values higher than 20% in
men and 30% in adult women [20, 66].
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The main etiological factors causing excess
body weight for height are assigned to overeating
and low physical activity, which lead to a positive
energy balance, and result in a body fat increase
[91]. Furthermore, there are other causes such as the
genetic component, the distribution of energy intake
throughout the day, the dietary composition of macro-
nutrients, sleep rest, endocrine disruptions or the
individual ability to oxidize energy substrates [26,
70, 93, 146]. Thus, obesity is a chronic multifactorial
disease resulting from the interaction between geno-
type, environment and physical activity patterns [14,
91, 95].

Obesity is considered as one of the major risk
factors in the onset of associated chronic diseases,
such as hypercholesterolemia, type II diabetes (T2D),
cardiovascular disorders and metabolic syndrome
features [101]. On the other hand, the higher BMI
and waist circumference are, the greater is the
relative risk of comorbidities [118]. Indeed, obesity
has become the second leading cause of premature
and evitable death, just after tobacco [14, 49].

Treatments for obesity: diet, exercise, pharmacology
and bariatric surgery

Low-calorie diets, programmes of physical activity
(typically aerobic) and behavioural therapy are com-
mon strategies to lose weight in the obese patient
[121]. These types of interventions are often the first
step in any therapeutic approach to treat obesity. In
general, it should be tested at least for 6 months before
considering the introduction of any other therapeutic
strategy [79]. The needs and characteristics of a
treatment against obesity will be determined regarding
the estimated risk in the obese patient and according to
clinical criteria for therapeutic intervention [53].
Additionally, there are interindividual differences in
the response to different dietetic interventions or to
physical exercise due to the genetic predisposition
[90, 112]. Thus, some attempts to set out differences
depending on the genotype have been reported,
although the information about the treatment success
is relatively poor.

Other therapeutic approaches have been applied to
induce weight loss, which may include exercise,
psychological support, drug therapy and at last, surgery
treatment [50], being the first two also prevention

strategies. Therefore, long-term approaches to main-
tain weight loss are still sought.

Generally speaking, weight losses are achieved
during the first 6 months of treatment. From this
point, a plateau is often reached, and gradual recovery
of the lost weight commonly occurs [39]. This
outcome is facilitated by the fact that adherence to
the diet and physical activity often declines and also
due to a possible metabolic adaptation [10], therefore
long-lasting therapies have been searched.

Dietetic and nutritional treatments

The most common treatment guidelines for obesity,
currently in use, are dietary and nutritional
approaches [1]. The restriction should not result in
a caloric intake below 1,000–1,200 kcal/day in
women and 1,200–1,600 kcal/day in men (except
in case of morbid obesity), since those values are the
minimum energy intake, which ensure a balanced
intake of micronutrients in the requested amounts [2,
10, 103]. An energy restriction of 500–1,000 kcal/day
compared to the usual diet results in weight loss
of 0.5–1.0 kg/week, which represents an average
of 8–10% of initial body weight in 6 months [1].
However, this weight loss is not completely linear [8].

There is some controversy regarding the distribu-
tion of macronutrients to be prescribed, being the
classical approach, with respect to a 1,000–
1,600 kcal/day, a distribution of 20% proteins, 50%
carbohydrates and 25–35% fat [48], although moder-
ate high-protein diets (30% energy) can also be
applied [80]. Short-term weight reductions have been
observed, but weight is regained in the long term [5].
It seems that one of the causes for the interruption in
weight loss is a reduction in basal energy expenditure
[106]. Protein intake is maintained high in some cases
with the aim of slowing the loss of lean body mass
and delaying the stabilization of weight [1, 28].
However, there are several unresolved issues, such
as the prescription of moderately high-protein diets
(20–35% of energy) during the weight maintenance
phase or the beneficial effect of some foods with
lower glycaemic index or glycaemic load on body
weight [2, 36, 80, 144]. Considering high-protein or
low-fat diets, it is important to increase the amount of
fibre (more than 30 g/day) and the monounsaturated
fat in order to facilitate the maintenance of a healthy
circulating lipid profile [114]. In conclusion, one
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can notice that adherence is low in many of the
extreme diets, with different proportions of macro-
nutrients, being the cause that in the long term
they are often not effective and obese people need
other types of aid [39].

Physical activity programmes

Some guidelines state that 60–90 min of daily moderate
exercise is requested for the treatment of obesity [67].
Traditionally, aerobic exercise has been recommended
in order to lose body fat, but recent studies show that
strength–endurance exercises (circuits of 6–10 exer-
cises and 10–15 repetitions, with a frequency of 2–3
times/week) can be more effective [154], particularly
to reduce abdominal fat [60, 97] and visceral adipose
tissue [62].

The strength–endurance programmes tend to burn
primarily abdominal fat, unlike fasting [141]. They
also favour low appetite by stimulating the
corticotrophin-releasing hormone [115]. The most
effective treatment to improve health parameters as well
as body composition appears to be strength training or
strength training combined with aerobic endurance
training, which seem to improve both health biomarkers
and to reduce fat content [133, 135, 142, 145].

Since the energy cost of all exercise modes except
walking seems to be beneficial, priority should be given
to the obese preferences to promote long-term activity
behavioural change [137]. Moreover, it is known that
physical exercise increases the secretion of endor-
phins [74], improving mood, and helping the patient
to maintain motivation increasing adherence to the
treatment.

Strength–resistance training (SRT) is associated with
great energy expenditure during the exercise session [30].
Some studies have reported that regular SRT is
effective in promoting weight loss in obese subjects,
decreasing fat mass and increasing lean body mass
and thus has little influence or no effective change in
total body weight [59, 120, 132]. SRT prevents the
loss of lean body mass, secondary to dietary restric-
tion [134], and reduces exercise-induced oxidative
stress and homocysteine, regardless of adiposity
[125]. A potential mechanism for this reduction could
include contraction-induced antioxidant enzyme upre-
gulation [139].

Several studies have demonstrated a decrease in
visceral adipose tissue after SRT programmes [38, 139]

which seem to reduce visceral fat depots through both
immediate effects (during weight loss and weight
maintenance) and delayed effects (during weight regain).
Furthermore, it has been shown that SRT preferentially
mobilizes the visceral and subcutaneous adipose tissue in
the abdominal region [31, 38, 61, 105]. This kind of
training procedure improves insulin-stimulated glu-
cose uptake in patients with impaired glucose toler-
ance or T2D [41]. Subsequent increases in muscle mass,
may regulate glucose levels and insulin responses to
glucose load and therefore, improves insulin sensitivity
[22, 132]. Also, high-intensity SRT decreases glyco-
sylated haemoglobin (HbA1c) levels in diabetics,
regardless of age [13, 127]. In addition, SRT is
considered a potential coadjuvant to pharmacotherapy
for the treatment of metabolic disorders, by decreas-
ing some major risk factors of metabolic syndrome
[46, 132, 133].

During the first 2 weeks of SRT, intensity should be
kept to an adaptive level so that patients learn the exercise
techniques and their muscle mass would probably not
increase. From the third week, the objective of the
training is hypertrophy [159]. Participants should start
with three sets per muscle group per week, on three
non-consecutive days of the week. One set should
consist of 10–15 repetitions corresponding with 60–
70% one repetition maximum lifting weight per 2–3
sessions per week, are likely to be beneficial for
maximizing the health effects of increased skeletal
muscle mass [155]. The number of training sets for
each muscle per week should be increased progres-
sively every 4 weeks by one set to a maximum of ten
sets per week. The SRT programme should consist of
exercises for all major muscle groups [132, 142].

Pharmacological treatments

If the goal of weight loss has not been achieved after
6 months of good adherence to a therapy combining diet
and physical activity, prescribing a drug treatment can
be considered, always with some limitations and
considerations [45]. Regarding the pharmacological
therapy, one may mention the appetite suppressants,
the food absorption/digestion blockers and the stimula-
tors of thermogenesis [16, 65, 82]. There is a long list
of prospective drugs, including tesofensine and
agonists and antagonists of satiety-inducing peptides
and orexigens respectively, confirming a potential bright
future for the treatment of the pandemic of obesity
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[119]. Nevertheless, they all entail well-known ad-
verse effects and some of them show a very doubtful
benefit/risk rate. Some other non-pharmacological
alternative products or plants have been considered,
but none of them has proved a long-term efficacy and/or
safety [42, 107]. Indeed, in Europe, the only accepted
pharmacological treatment is the prescription of
Orlistat, an inhibitor of lipase, combined with a low-fat
diet [71, 119].

Bariatric surgery

At last, surgery may be an effective long-term
treatment of morbid obesity, by reducing some
clinical manifestations associated with obesity [88].
This approach could be indicated in subjects with
BMI >40 kg/m2 or BMI >35 kg/m2 in the presence of
comorbidities or with an inadequate metabolic control
[117]. Diabetes is the fastest comorbidity corrected after
bariatric surgery, achieving significant improvements in
glycaemic control or eradication of the disease between
80% and 95% in 10 years [23, 37]. This surgery entails
serious postoperative complications directly related
with the severity of the obesity; also male gender and
increasing age were globally associated with an
increased risk of complications [138, 140].

Hypoxic therapy and its applications

One of the alternatives to address high-prevalence
diseases seems to be hypoxic therapy, which is
commonly used in medical practice nowadays and well
positioned in the field of traditional/alternative medi-
cine, hypoxitherapy. The question remains open wheth-
er hypoxia or re-oxygenation is the responsible for the
formation of adaptive signals and what the functional
significance is. Experimental studies have not been
appropriately focused on pheno- and genotypic features
of the body’s response to hypoxia. Until now, what it is
known is that appetite is suppressed, and a percentage of
body mass is lost at high altitudes [126, 156].
Furthermore, oxygen variations in the organic system
produce changes in body composition [111]. These
findings can be of great interest for the treatment of
obesity. Therefore, this review will focus on the
methods of hypoxia and their potential applications.

Methods of hypoxic exposure and of hypoxic training

In general, there are two types of hypoxia stimuli: (1)
intermittent hypoxic exposure (IHE)—passive exposure
to hypoxia lasting from a few minutes to hours that is
usually repeated over several days. These intermittent
hypoxic exposures are interspersed with exposure to
normoxia or lower levels of hypoxia. IHE raises the
question of the minimum duration of exposure to induce
erythropoiesis. It has been suggested that 180 min of IHE
daily is necessary to increase endogenous erythropoietin
(EPO), but in the vast majority of protocols, this appears
to be inconsistent [19, 40, 75, 148]. Cerebral oxygen-
ation decreases, whereas muscle oxygenation increases
due to a greater ability to extract O2 in order to
counteract reduced O2 availability, as shown by a
decreased deoxyhaemoglobin during heavy exercise
[92]. (2) Intermittent hypoxic training (IHT) consists of
physical activity under hypoxic conditions (for short
periods) and remaining at normoxic conditions for the
rest of the time. This is another way to benefit from
hypoxic stimulus without undergoing the detrimental
effects of a prolonged exposure to hypoxia. This method
induces specific molecular adaptations at muscular level
that do not occur in normoxic conditions [116, 148].

Several methods of IHE and/or IHT are currently
performed by elite athletes: traditional “live high-train
high”, “live low-train high”, “live high-train low” or by
using supplemental O2 when training in altitude (LH +
TLO2) [148]. More recently, the interest on intermit-
tent hypoxic methods has been investigated: IHE and
IHT. The technological development of various
hypoxic devices has also made possible to combine
these methods [143]. In spite of the substantial differ-
ences between these forms of hypoxic training and/or
exposure, all these methods have the same goal,
inducing physiological adaptations and enhancement
of athletic performance [158] (Table 1).

The experimentally used strategies differ greatly in
cycle length, the number of hypoxic episodes per day and
the number of exposure days. Thus, protocols vary from
those that examine the effect of as few as 3–12 relatively
short (2–10 min) bouts of hypoxia interspersed with 2–
20-min episodes of normoxia on a single day [15] to
those that examine longer daily exposures (1–12 h)
over periods ranging from 2 to 90 days [19, 143] and
those that consider short sinusoidal cycles of hypoxia/
normoxia (30–90 s) 7–8 h daily for 30–70 days [75].
Regardless of the schedule, the compelling outcome is
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that these repeated episodes of hypoxia elicit persis-
tent changes in a variety of physiological responses
[27, 58, 92, 122, 124].

Intermittent hypoxia and its applications
in physiological and pathophysiological states

Certainly, there are adaptations to chronic hypoxia that
are not necessarily beneficial. Chronic intermittent
hypoxia significantly increases right ventricular heart

mass [25]. It has been occasionally associated with
pulmonary vascular remodelling and pulmonary hy-
pertension [96]. A number of investigations and trials
identified physiological effects on different cells, tissues
and systems and respiratory disorders (Table 2).

Intermittent hypoxic exposure

A significant percentage of the obese population
suffers from obstructive sleep apnea (OSA) [94].

Table 1 Different methods of hypoxic exposure and of hypoxic training

Methods of hypoxic
exposure and/or training

Hypoxic exposure, passive (IHE) Hypoxic training, active (IHT)

IHE + normoxia LL − TH

IHE + supplemental O2 IHIT

LHTL: hypoxic generation method: (1) natural
altitude (IH), (2) nitrogen dilution (NH), (3)
oxygen filtration (NH)

AHCT

LHTH (IHE + IHT)

Examples (1) 5-5′ environment air (FiO2=20.5%)—
hypoxic air gas (FiO2=9–12%)/60–180′ per
day/2–4 weeks [15, 68]

(1) 90–120′ environment air (FiO2=16.7–14.6%) [108]
or altitude (2,000–3,000 m) low-moderate intensity/
4–5 sessions/week/3–8 weeks [17]

(2) 8–12 h to sleep (FiO2=11.2–15.6%) per
day/3 weeks [15, 158]

(2) 30–60′ambient air (FiO2=16.7–11.2%) [57, 100, 143]
or altitude (2,000–5,000 m) high-intensity exercise/2–4
sessions/week/3–6 weeks [19, 75]

Usefulness Pre-acclimation in climbers [17] Performed by athletes [17, 19, 57, 75, 81, 108, 116, 143,
158, 163]

Heart [24], respiratory [9, 68, 69] and nervous
system [129, 161, 162] diseases

Pre-acclimation in climbers [54]

Health field in general [15, 55, 60, 123] Metabolic and cardiovascular risk [12, 24, 29, 43, 63,
77, 162]

Glycaemic control [13, 33]

Antioxidant system [18, 147]

NH normobaric hypoxia, HH hypobaric hypoxia, LH living high, TH training high, TL training low, LHTL living high-training low,
LHTH living high-training high, LL living low, IHE intermittent hypoxic exposure, IHT intermittent hypoxic training, IHIT
intermittent hypoxic interval-training, AHCT altitude/hypoxic continue training

Table 2 Compensatory mechanisms and responses to hypoxia

Respiratory system Cardiovascular system Cellular and metabolic Regulation of body weight

Hyperventilation [155] Increases basal and maximal heart
rate [6, 52]

HIF-1 factor and VEGF expression
[122, 153]

Decreases basal leptin levels [72]

Increases lung diffusion capacity
for CO and O2 [149]

Increases peripheral vasodilation [63] Angiogenesis [28, 47] Increases adrenergic system [85, 159]

Increases the CO2 reserve in
sleeping [69]

Increases diameter of arterioles [63] Increases glycolytic enzymes and
number of mitochondria [46]

Basal noradrenaline remains high
post-treatment [84]

Decrease in SaO2 was smaller [110] Increases Hg–O2 affinity [32] O2, Fe and glucose conveyors [109] Increases blood serotonin levels [51]

Ventilatory response during exercise
Increased [54]

Normalises blood pressure [12, 124] Improves insulin sensitivity [87] Appetite is suppressed [126, 156]

Improves respiratory function [68] Cardiovascular protection [155, 163] Increases glucose transporter GLUT-4
[33, 34]

Increases body weight loss [84]
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OSA is characterized by transient periods of oxygen
desaturation followed by re-oxygenation and is a
major cause of systemic damage (oxidative stress,
inflammation, sympathetic activity, vasculature remod-
elling and endothelial dysfunction) and/or protective
(preconditioning-like cardioprotective) effects. This
condition (OSA) has rarely been given importance in
obese patients, although many OSA-bearing subjects
are obese, and obesity is an independent risk factor for
many comorbidities associated with OSA [104].Thus, it
has been speculated that the chronic intermittent
hypoxia caused by OSA in obese patients might be
one of the underlying mechanisms in the morbidity–
mortality paradox of obesity. Moreover, OSA in-
creased plasma neuropeptide Y levels, an appetite-
stimulating peptide, independently of body weight
[136]. This is a controversial feature since risks
concerning endocrine health caused by sleep breath-
ing disorders threaten to exacerbate the already
compromised metabolic regulation and control of
normal body weight in this obese population [102].
Experimental evidence from human models is re-
quired to elucidate such risks and to facilitate clinical
decisions about whom to treat. Interestingly, IHE
induces lessening of bronchial spasm, more uniform
lung ventilation and increases ventilation sensitivity
to hypoxia [9].

Watson et al. [152] explored genetic contributions
of sleep disturbances in over 1,800 twin pairs and
found that 10% of common additive gene effects
accounted for 10% of the phenotypic association
between obesity and insomnia. Similar gene model
fitting studies are needed to assess the genetic
contribution of reduced sleep to BMI [94].

Sleep intermittent hypoxia debt exerts profound
effects on metabolic hormones and molecular signa-
tures [4]. These changes are accompanied by an
increased food intake and energy storage, which
potentiates the development of insulin resistance,
T2D, hypertension and heart disease [113]. Recent
reports provide new insights about possible mecha-
nisms to explain OSA effects on lipid and glucose
metabolism by inducing sympathetic activation, in-
creasing systemic inflammation, stimulating counter-
regulatory hormones and fatty acids or causing direct
pancreatic beta-cell injury [44].

Lately, it has been shown that hypoxia through
hypoxia-inducible factor (HIF)-1 expression changes
helps to regulate mitochondrial function. It is

interesting to note that there are often defects in the
mitochondrial function in many pathophysiological
processes, which seem to improve with the stimuli of
IHE [130].

Intermittent hypoxic training

The potential applications of IHT in health and in
various pathophysiological states are numerous [9,
76], since it could be a non-pharmacological method
for enhancing some physiological functions and
rehabilitation in patients with different chronic dis-
eases [63]. Hypoxic training increased physical work
capacity of about 5% in the healthy elderly subjects
and 10% in elderly subjects [155].

The ventilatory response to hypoxia increases
during submaximal exercise and induces a smaller
hypoxic pre-acclimation decrease in arterial oxygen
saturation (SpO2) [54, 110]. Furthermore, IHT has
been shown to raise baroreflex sensitivity to normal
levels and to selectively increase hypercapnic venti-
latory response, total exercise time, total haemoglobin
blood levels and lung diffusion capacity for carbon
monoxide in bronchial asthma and chronic obstruc-
tive pulmonary disease patients [149].

Some favourable effects of IHT are conditioned by
triggering a long-term adaptation to hypoxia, leading
to positive changes in internal organs. These phe-
nomena have been well studied in young and middle-
aged people. In the cardiovascular systems, reduced
sympathetic-adrenal reaction to stress and the blood
flow along the vessels of miocirculatory system were
improved at the expense of increases on the diameter
of arterioles [63]. In elderly people, IHT had a
positive influence on the antioxidant system, along
with an activation of the antiradical defence enzymes,
and a decrease of lipid peroxidation products in
tissues [18].

A few studies have investigated the influence of
various IHT regimens on inflammation-related cyto-
kine secretion caused by acute exercise [151]. Severe
intermittent hypoxia (IH) or moderate IH (12–15%
O2, 1 h/day, 5 days/week for 8 weeks) ameliorated the
effects of severe exercise on IL-1β secretion. A
possible reason for this outcome is that training
increases circulatory anti-inflammatory cytokine lev-
els, such as IL-6 and IL-10, with inhibited production
of IL-1β during severe exercise [150].
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The neuroprotective role of EPO has been proven
[129] by showing that normobaric hypoxia reduced
the risk of cardiovascular disease [99, 155, 164],
improved the respiratory function [68] and produced
CNS protection [89] and basal metabolism reprog-
ramming [7]. On the other hand, it is known that
training in hypoxia and in normoxia reduced the
circulating concentration of free fatty acids, total
cholesterol and HDL cholesterol. However, it did
not reduce the levels of homocysteine, an acidic
molecule implicated in heart disease [98].

At the same time, it has been demonstrated that
IHT may normalize blood pressure in hypertensive
patients [123, 124]. Moreover, it has been shown that
systolic blood pressure is reduced after IHT, causing a
hypotensive effect [43]. Thus, it has been confirmed
that physical exercise in hypoxia decreases the risk of
cardiovascular disease [12, 24].

On the other hand, aging is associated with
changes in breathing regulation, particularly, in
respiratory sensitivity to IHT. One theory of aging
holds that reactive oxygen species play a key role in
this process. These species have also been implicated
in the carotid body O2 sensing. Studies have
investigated hypoxic ventilatory responses (HVR)
and antioxidant enzymes activity in healthy young
and elderly people in adaptation to IHT [76]. The
elderly demonstrated decreased HVR and blood
catalase activity on a background of strong negative
correlation between the levels of end-tidal CO2

tension and superoxide dismutase (SOD) activity.
The adaptation to IHT resulted in increased HVR
and SOD activity in both groups [76].

Furthermore, the results of clinical studies have
shown that IHT in elderly patients could be useful and
valuable, leading to reduction in clinical symptoms of
angina and duration of daily myocardial ischemia,
normalization of lipid metabolism, optimization of
oxygen consumption and improvement of vasomotor
endothelial function due to increased formation of
nitric oxide, normalization of microcirculation and
increased exercise tolerance [77, 78].

Intermittent hypoxia and insulin sensitivity

Acclimation to an altitude of 4,000 m in IHE has been
found to decline blood glucose, parallel to a higher
glucose turnover, both at rest and during exercise
[21]. This increased muscle uptake of glucose is

accompanied by enhanced insulin sensitivity [11,
131]. Likewise, it was reported that in high altitude
(2,600 m) the HbA1c decreased significantly in obese
people 4 weeks after the altitude stay [84].

An increase in body fat is linked with a decline in
insulin sensitivity in both obese and elderly individ-
uals, and a recent study showed that acute hypoxic
training improved glucose tolerance, and that com-
bined exercise in hypoxic state further ameliorated
insulin sensitivity in T2D [87]. Other trial demon-
strated that IHE glucose tolerance enhancement 4 h
after exposure can be attributed to improvements in
peripheral insulin sensitivity in sedentary males with
T2D. Therefore, it may improve short-term glycaemic
control [85].

Similar to the effects of exercise, increased epineph-
rine during IHE, which was reported in healthy humans
may have contributed to glycogen utilization via
increases in cyclic adenosine monophosphate concen-
trations, potentially leading to post-treatment increased
on insulin sensitivity [72]. Similarly, it has been
described that both IHE and IHT programmes carried
out in hypoxic conditions increased glucose trans-
porter GLUT-4 levels [33].

Hypoxia and exercise have shown an additive
effect on insulin sensitivity [87], suggesting that
insulin signalling and insulin-dependent glucose
transport, might have been upregulated following
hypoxic exercise [33, 34]. This additive improvement
could also be attributed to an increase in the relative
intensity of the practised exercise in hypoxia [56]. To
sum up, acute hypoxic exercise could improve short-
term glycaemic control in sedentary individuals with
insulin resistance.

Intermittent hypoxia training and molecular
mechanisms

In recent years, certain proteins involved in the
process of sensing and regulating the concentrations
of oxygen in tissues have been described. Such
proteins may have a predominant role in the HIF
and in the hydroxylase regulation [92].

There is a large demand of oxygen during physical
activity, regardless of the type and intensity of
exercise [73]. In spite of that, there is a general
condition of ischemia–reperfusion due to the high
voltage generated by the muscles during maximal or
submaximal contractions. In other words, there are
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cycles of hypoxia–hyperoxia [35]. Physical activity
leads to an increase in oxygen free radicals, but it is
not entirely clear whether the phenomenon linked to
free radicals increase is hypoxia or hyperoxia.
However, it seems that hyperoxia is the most likely
factor [157]. Other researchers have suggested that
free radicals are possible mediators of the response to
hypoxia [3]. However, it has not been possible to fully
understand the interaction between hypoxia–hyperoxia,
free radicals, HIF and intracellular signalling neither in
the skeletal muscle nor in other cells yet [157].

There are reports showing that after 6 weeks of
physical training, mRNA levels of HIF-1 rise (between
58% and 82%) only in subjects who trained in hypoxic
environment (3,850 m), both at low and at high
intensity, compared to other groups who trained in
normoxia at low and high intensities of exercise [58,
148]. These studies suggest that there are no HIF-1
increases in normoxic environments and that in
hypoxia only the effects achieved due to physical
training in normoxia are relevant.

On the other hand, mRNA levels of phosphofruc-
tokinase gene, a key enzyme in glycolysis, are
increased as it has been shown to occur only in
high-intensity IHT [148]. This finding that the
intensity of exercise in hypoxia may have different
effects at the metabolic level, and that might be
related to variations between the hypoxia and the
hyperoxia produced, required to be further clarified.

There is an extensive list of genes regulated by
hypoxia [122], many of which are involved in growth
and differentiation [153]. Furthermore, it is also
known that exercise regulates the expression of
many genes, but the mechanisms are often un-
known and the genes controlling this phenomenon
(and favour cardiovascular health) are still under
investigation. Regular bouts of physical activity
may cause changes in gene expression that
accumulate over time and, ultimately, affect phe-
notypes, such as body weight, blood lipid profile
and tumour development. Furthermore, acute ac-
tivity may affect gene expression and phenotypes
differently depending on whether the individual is
regularly inactive or active [128]. Knowledge of
these genes would help to understand, for example,
how exercise leads to muscle hypertrophy. This
outcome suggests that further studies are needed to
evaluate the relationship between hypoxia and the
genes regulated by the HIF-1.

Adaptations to exercise or hypoxia are increasingly
being applied preventively or as a treatment to
different pathophysiological situations and, therefore,
they begin to have global significance [27]. HIF
expression is upregulated with exercise and it might
be an important factor that regulates adaptive gene
responses to exercise [86]. It is therefore important
that only high-intensity training under hypoxic con-
ditions leads to adaptations that include regulation
and elevated HIF-1, as a mechanism to compensate
the reduced availability of oxygen. It seems that
intense muscle contraction and oxygen deficiency are
essential to generate some adjustments. Thus, it has
been noted that the muscle generates a series of major
adaptations when training in hypoxia [58].

However, at the present time, there is scarce
information about how different intensities and
kinetic contraction of muscle affect the activation of
HIF-1 and other proteins [58]. The only available
information is that HIF-1 average life is less than
5 min [55]. For this reason, training protocols in
intermittent hypoxia are usually of 5′–5′, hypoxia–
normoxia. This situation may explain why training at
sea level is not enough to alter the HIF-1 cascade
[86]. Although it may be surprising, the studies
developed by Lundby and his colleagues indicate that
regular training reduces the hypoxia observed after
acute exercise. Therefore, there are no major changes
in the HIF-1, as they existed at the beginning of the
training [100]. Although cellular hypoxia persists, the
HIF-1 is not affected equally and, as a consequence, it
becomes tolerant to hypoxia. According to Lundby
and colleagues [86], there are other mechanisms
explaining the effects produced by intermittent
chronic training in hypoxia. Nitric oxide (a potent
vasodilator) may be involved in this adaptive
mechanism, but no studies proving this hypothesis
have been found. Oxygen free radicals may be the
other factor involved in this mechanism [29], since
it is known that they increase in hypoxia and that, at
the same time, they are mediators of muscular
adaptations [57, 58, 64].

Intermittent hypoxia and exercise: possible
applications in obesity

Oxygen plays an important role, as an electron
acceptor in the long chain of reactions produced to
obtain energy in the form of ATP, both in humans and
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in other higher organisms. Low oxygen levels lead to
tissue hypoxia; high oxygen levels lead to inflamma-
tion hyperoxia [140]. The two states entail different
effects, and body composition changes may occur
because of them [111]. Studies show that appetite is
suppressed and that there is body mass loss at high
altitudes [126, 156]. Similarly, it has been noted that
oxygen variations in the organic system produce
changes in body composition [111].

Acute exposure to hypoxia, both in humans and in
rats, produces an increase in blood serotonin levels [51].
Moreover, hypoxia causes an increase in the adrener-
gic system [6, 159]. Food intake, protein intake and
carbohydrates selection, as well as body weight, are
partially regulated by serotonin, a compound that after
administration to rats produces anorexia [51].

Rats submitted to a high altitude (Cerro de Pasco,
Perú, 4,340 m) for up to 84 days showed a physiological
adaptive response with decreased body weight gain
(−15%), increased right ventricle weight (+100%) and
increased hematocrit (+40%) compared with sea level
animals. These classical parameters of adaptation to
high altitude were accompanied by an increase in heart
mitochondrial enzymes: complexes I–III activity by
34% and mitochondrial nitric oxide synthase activity
and expression by more than 75% [160].

Similarly, in obese subjects, it is known that leptin
is involved in regulating body weight and controlling
energy resources [12, 139]. It has been observed that
acute hypoxia decreases blood glucose and basal
leptin levels [72]. These observations allow us to
consider the hypothesis that IHE defined as situations
of exposure to low concentrations of ambient oxygen
alternating with periods of normoxia [61] may result
in decreased appetite and fat loss, which might be of
interest for the treatment of obesity. On the other
hand, IHE can reduce not only body weight by
increasing leptin concentration and enhancing liver
leptin expression, but also decrease serum glucose,
blood cholesterol and meanwhile prevent steatosis in
liver cells effectively, in obese mice [83]. Moreover, it
has been described that obese individuals staying
1 week at 2,650 m of altitude (without exercise) lost
weight and reduced blood pressure [84]. It can be
hypothesized that adding exercise to the IHE stimulus
could result in further cardiovascular changes and in
an improved health and body composition.

Physical activity in hypoxia increased the number
of mitochondria, the capillary density [107] and

muscle oxidative enzymes and changed energy
production pathways with potential for an increase
in lipolysis [116]. Adaptive responses to the respira-
tory tract and cardiovascular system are produced,
and at the same time, the mitochondrial efficiency,
pH/lactate regulation [81, 164] and physical perfor-
mance are increased [17, 108, 143].

There is scientific evidence suggesting that a lower
degradation of hypoxia-inducible factor alpha (HIF-
1α) caused by conditions of hypoxia, along with
physical activity, can prove to be very effective and
be part of major medical applications in the long term
[27]. After 6-week training in IH, there was a
dramatic increase in mRNA concentrations of many
genes, such as HIF-1α (+104%), glucose transporter-
4 (+32%), phosphofructokinase (+32%), citrate syn-
thase (+28%), carbonic anhydrase-3 (+74%) or
monocarboxylate transporter-1 (+44%) [148]. These
results demonstrated that training in IH at high
intensity is probably a good way to favour oxygen
utilization within the muscle.

Thus, the hypoxic stimulus in addition to diet and
exercise can be another powerful incentive to lose
weight, whichmay have effects in the mid and long term
(unlike diet therapy and physical activity alone), since
effects of hypoxia are maintained for 1 month post-
treatment, due to increases in basal noradrenalin and
other possible changes that remain to be clarified [84].

Proposed new hypoxic training model

The interval hypoxic training protocol comprises
repeated exposures to hypoxic air breathing, alternat-
ed with breathing environment (normoxic) air. During
the training course, strength–resistance exercises (20′)
and high-intensity aerobic exercises (30–40′) are
performed. The hypoxic air decreases gradually from
16.7% to 11.2% (SpO2, 89–75%) in order to provide
a stepwise adaptation and to avoid overtraining.
Sessions are repeated three to four times per week
for periods of 3–6 weeks, and session duration is in
the range of 40–60′ (Table 3).

The physiological response is monitored by a
pulsioxymeter, a device that measures SpO2 and
heart rate. Other physiological parameters can also be
monitored, for instance blood pressure and cardiac
activity by an electrocardiogram. Monitoring of the
user’s physiological parameters allows us to avoid the
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undesirable effects of overdosing. Advanced
biofeedback-controlled hypoxicators are capable of
adjusting the oxygen concentration in the inhaled
hypoxic air automatically, compensating for individ-
ual variability [15, 143].

Hypoxia stimulus charge (HSc=SpO2%×time in
minutes) parameter provides an objective measure of
the hypoxic stress delivered during the IHT session,
compared to simple recording of the inhaled fraction
of oxygen (FiO2). HSc provides the dosage received
by a person at the end of the session and compensates
for individual variability in scientific studies to ensure
that subjects are correctly controlled for individual
exposure. It is accepted that tissue hypoxia develops
only when SpO2 drops to 90% or below. This is due
to the oxyhaemoglobin dissociation curve. SpO2

above 90% produce very little effects or decrease of

arterial partial pressure. Due to all of these data, our
protocol of IHT comprises ranges of SpO2 between
75% and 89%.

Concluding remarks

High-intensity exercise and intermittent hypoxia in
the short and long term may have important medical
applications in pathophysiological problems with
metabolic–muscular disorders, such as obesity. How-
ever, nowadays, there are few studies and clinical
initiatives to use stimuli of intense physical activity or
intermittent hypoxia, with the uncertainty that patients
may not bear this type of training or that the training
may not result very pleasant for them. Although it is
not possible to stay at high altitude and to remain

Table 3 New method of IHT (proposed by the authors of this review)

Method 40–60′ environment air (FiO2=16.7–11.2%) or altitude (2,000–5,000 m)/sets of strength–resistance
exercises (20′) + high-intensity aerobic exercise (30–40′)/3–4 sessions/week/4–6 weeks

Sets and recovery times Exercise between sets, 20–180′′

Recovery between sets, 2–6′

Target SpO2% Exercise between sets, 75–80%

Recovery between sets, 80–89%

Hypoxia stimulus charge (HSc) HSc=SpO2%× t (time in minutes)

3,400–4,800 units

Total sessions 16–24

Applications High-prevalence diseases Sports

Obesity Elite athletes (sport-specific exercises)

Hypertensive patients Pre-acclimation in climbers
T2D

OSA

OSA obstructive sleep apnea, T2D type 2 diabetes

Fig. 1 Normobaric–
intermittent hypoxic tent
equipped for research [143]
and used to trained climbers
for an Everest expedition,
2011 (unpublished results)
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there in many countries—due to orographic condi-
tions—current technology allows to simulate the
effects of altitude (hypoxia) at sea level, through
instruments that reduce the content of oxygen on
inspired air (normobaric hypoxia) (Fig. 1).

Intermittent hypoxia may have many applications
for improving cardiovascular health, the great public
health concern in Western societies [24]. Similarly,
staying in altitude or hypoxic situations may help to
lose weight and normalize arterial blood pressure.
Summing up, the IHT is a non-pharmacological
method for enhancing the functional resources of a
healthy organism and the rehabilitation in patients
with different chronic diseases. The IHT stimulus
could be of great tool and very practical for clinical
use in obese patients by reducing appetite and
regulating fat deposition.
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